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A B S T R A C T

Background: Spiral waves are considered to be one of the potential mechanisms that maintain complex ar-
rhythmias such as atrial and ventricular fibrillation. The aim of the present study was to quantify the complex
dynamics of spiral waves as the organizing manifolds of information flow at multiple scales.
Method: We simulated spiral waves using a numerical model of cardiac excitation in a two-dimensional (2-D)
lattice. We created a renormalization group by coarse graining and re-scaling the original time series in multiple
spatiotemporal scales, and quantified the Lagrangian coherent structures (LCS) of the information flow under-
lying the spiral waves. To quantify the scale-invariant structures, we compared the value of the finite-time
Lyapunov exponent between the corresponding components of the 2-D lattice in each spatiotemporal scale of the
renormalization group with that of the original scale.
Results: Both the repelling and the attracting LCS changed across the different spatial and temporal scales of the
renormalization group. However, despite the change across the scales, some LCS were scale-invariant. The
patterns of those scale-invariant structures were not obvious from the trajectory of the spiral waves based on
voltage mapping of the lattice.
Conclusions: Some Lagrangian coherent structures of information flow underlying spiral waves are preserved
across multiple spatiotemporal scales.

1. Introduction

Spiral waves are one of the potential mechanisms that maintain
complex arrhythmias such as atrial and ventricular fibrillation in hu-
mans [1]. The outcomes of interventional catheter ablation therapy
targeting rotors, the rotational centers of spiral waves, for treatment of
atrial fibrillation have been conflicting [2–6]. Those conflicting results
from clinical studies suggest that our current understanding of the
mechanism of fibrillation is far from complete.

Spiral waves are an emergent macroscopic collective behavior of the
heart resulting from interactions among a large number of cells at the
microscopic scale. We recently developed an information-theoretic
approach to numerically quantify the complex interactions occurring at
the microscopic scale as the organizing manifolds of information flow
[7]. Those manifolds, called Lagrangian coherent structures (LCS)
[8–10], include two types: (1) Repelling LCS quantify stretching along a
material line, and indicate walls through which the flow does not tra-
verse, and (2) attracting LCS quantify folding along a material line, and
indicate channels through which flow is funneled. Some repelling and
attracting LCS of rotors become more clearly defined over a longer

observational period. This finding suggests that the LCS that is rela-
tively stable over time contributes to maintenance of spiral waves. In
addition, our recent work demonstrated that the mechanism that
maintains spiral waves can be quantified as information flow from
macro-to micro-scale behaviors of the cardiac system [11]. Taken to-
gether, these findings suggest that the mechanism that maintains spiral
waves can be quantified as the scale-invariant LCS.

The aim of the study was to quantify the complex interactions oc-
curring during spiral wave reentry at multiple scales. Specifically, we
aimed to quantify structures beyond phase singularities of spiral waves.
To accomplish this aim, we applied iterated coarse-graining and re-
scaling [12] to the microscopic description of the cardiac system with
spiral waves to generate a renormalization group in a series of spatio-
temporal scales [11,13]. We hypothesized that the LCS of information
flow underlying spiral waves are scale-invariant.

2. Methods

We performed the simulation and the data analysis using Matlab
R2017a (Mathworks, Inc.).
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2.1. Model of spiral waves

We used a deterministic, phenomenological model of the cardiac
action potential described by Fenton and Karma [14]. This model ac-
curately reproduces action potential duration (APD) restitution, APD
alternans, conduction block, and spiral wave initiation, which are im-
portant properties of cardiac action potential [15]. The model consists
of three variables: the transmembrane potential V, a fast ionic gate u,
and a slow ionic gate w.
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Here Cm is the membrane capacitance (= 1 μF cm/ 2) and D is the
diffusivity with value 0.001 cm2/ms to represent a two-dimensional (2-
D) isotropic system [15]. The current Ifi is a fast inward inactivation
current used to depolarize the membrane when an excitation above
threshold is induced. The current Iso is a slow, time-independent recti-
fying outward current used to repolarize the membrane back to the

Fig. 1. Conceptual overview. A. Spiral waves and rotors. Spiral waves in a ×64 64 lattice. The transmembrane potential is color-coded (arbitrary unit between 0 and
1). The rotors are defined as the phase singularities of the phase map (filled red circles). B. Conversion to bipolar electrogram. The transmembrane potential (TMP, left
panel) derived from the model was converted to unipolar (middle panel) and subsequently to bipolar electrogram (right panel). C. Renormalization group. The bipolar
electrogram is color-coded (arbitrary unit between 0 and 1). Spatial scales include scale 1 ( ×64 64 lattice), scale 2 ( ×32 32 lattice), scale 3 ( ×16 16 lattice), and scale
4 ( ×8 8 lattice). Temporal scales include scale 1 (1000 Hz), scale 2 (500 Hz), scale 3 (250 Hz), and scale 4 (125 Hz). Each circle represents a data sampling point. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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resting potential. The external current Iext is the current applied to sti-
mulate and create spiral waves. The current Isi is a slow inward in-
activation current used to balance Iso and to produce the observed
plateau in the action potential. The two gate variables of the model
follow first order equations in time:
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Finally, the three currents are given by the following:
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We chose the following model parameters to produce stable phase
singularities for the study: τd =0.395 (msec); +τu =3.33 (msec); −τu1
=9 (msec); −τu2 =8 (msec); τ0 =9 (msec); τr =33.33 (msec); τsi =29
(msec); +τw =250 (msec); −τw =60 (msec); Vc =0.13; Vu =0.04; Vc

si

=0.50; and k=15.
We generated a set of a 2-D ×512 512 isotropic lattice ( xΔ

=0.025 cm) of components by inducing spiral waves using the cross-
field stimulation method [16].

2.2. Downsampling and conversion

We spatially coarse-grained the original ×512 512 lattice of time

series to a ×64 64 lattice by extracting the top left corner of each ×8 8
block. In each component, we computed the time series of transmem-
brane potential for 10 s excluding the stimulation period with a time
step of 0.1 msec, which was subsequently downsampled at a sampling
frequency of 1000 Hz [17]. The rotors were defined as the phase sin-
gularities of the phase map as described [13]. To approximate clinical
recordings, we converted the transmembrane potential derived from
the model to unipolar and subsequently to bipolar electrogram (Fig. 1B)
using the 64 × 64 lattice [18]. Briefly, conversion to the unipolar
electrogram was performed by finding the sum of the Laplacian op-
erator of the transmembrane potentials weighted by the distance
around a specific component:
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Here u t( )i j, is the unipolar signal as a node i j, , while v t( )k l, is the
transmembrane potential at cell k l( , ). Subsequently, the bipolar elec-
trogram was obtained by calculating the difference of unipolar poten-
tials between two adjacent components of fixed distance.

= − + +w t u t u t( ) ( ) ( )i j i j i S j S, , , (11)

Here w t( )i j, is the bipolar voltage at node i j( , ), and =S 1, which
represents our reference inter-electrode spacing.

2.3. Renormalization group

We generated a renormalization group of the system by a series of
spatial and temporal coarse-graining and rescaling operations on the
original microscopic description of the system (Fig. 1C) [13]. We
coarse-grained the system spatially and temporally with decimation by
a factor of 2. Spatial decimation transforms a ×n n lattice into a ×n n

2 2
lattice by extracting the top left component of each ×2 2 block. Tem-
poral decimation downsampled the time series of each component by a
factor of 2 (Fig. 2). Using a combination of iterative coarse-graining in
spatial and temporal axes, we created a renormalization group of a total
of 16 spatiotemporal scales of the system. The renormalization group
included spatial scale 1 ( ×64 64 lattice), 2 ( ×32 32 lattice), 3 ( ×16 16
lattice), and 4 ( ×8 8 lattice), and temporal scales 1 (1000 Hz), 2
(500 Hz), 3 (250 Hz), and 4 (125 Hz).

2.4. Lagrangian coherent structures of information flow

We quantified the Lagrangian coherent structures (LCS) of in-
formation flow underlying the spiral waves as described previously [7].
Briefly, transfer entropy [19] is a non-parametric statistic measuring
the directed reduction in uncertainty in one time-series process X
(source) given another process Y (destination).
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where k and l denote the length of time series in the processes X and Y,
respectively:
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p α β γ( , , ) denotes the joint probability of the time series generated by
α, β, and γ. p α β( | ) denotes the conditional probability of the time series
generated by α, given the time series generated by β. We adopted the
standard convention =log 0 02 .

In this study we defined k and l such that xt
k and yt

l contain a unit
time (= 1 s) of the time-series preceding time t ( =k l). By looking at
the different probabilities of the 3-tuples, ( +yt 1 , yt

l , xt
k ), we can

quantify how much better one can predict the value of +yt 1 given both yt
l

and xt
k over just yt

l. We used the continuous transfer entropy calculator

Fig. 2. Spatial and Temporal Decimation. Spatial decimation extracts the top
left data point of every ×2 2 grid. These extracted values are used to create the
subsequent spatial scale. Temporal decimation downsamples a given time series
by taking every other time point to create the next temporal scale. The example
shown indicates a binary time series for an illustration purpose.
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of the Java Information Dynamics Toolkit (JIDT) to calculate transfer
entropy [20]. Transfer entropy was expanded to a vector field on a 2-D
lattice, allowing us to define information flow as time-dependent vector
fields. Then we defined an information particle as a point that moves
with the local information velocity. This allowed us to compute in-
formation transport in a Lagrangian perspective. We calculated the fi-
nite-time Lyapunov exponent (FTLE) to quantify the spatially and
temporally localized divergence of trajectories. The forward FTLE field
was obtained by integrating the velocity forward in time from t0 to t.
Similarly, the backward FTLE field was obtained by integrating the
negative velocity field backward in time from t to t0. The Lagrangian
coherent structure (LCS) was defined as ridges, or lines of local maxima,
of the FTLE field [9]. A sharp ridge is characterized by a high negative
curvature, i.e., high negative eigenvalues μ of the Hessian matrix of the
FTLE field ∇ Λ x( )t

t2
00 . For points on the ridge, the gradient of the FTLE

field ∇Λ x( )t
t

00 is tangent to the ridge line and perpendicular to the ei-
genvector η corresponding to the smallest eigenvalues <μ 0min of the
Hessian, which leads to the condition:

⋅∇ =η Λ x( ) 0 .t
t

00 (15)

Repelling and attracting LCS were derived from the forward and the
backward FTLE fields, respectively. The FTLE in the renormalization
group was interpolated back to a ×64 64 lattice using cubic spline to
allow inter-scale comparison between components. The use of cubic
spline to interpolate the FTLE was justified because the FTLE was de-
rived from the cardiac electrophysiology time series, and cubic spline
has been extensively used to interpolate cardiac electrophysiology time
series [21].

Fig. 3. Lagrangian coherent structures. The top panel (orange) shows the repelling Lagrangian coherent structures (LCS) derived from the backward finite-time
Lyapunov exponents (BFTLE). The bottom panel (pink) shows the attracting LCS derived from the forward finite-time Lyapunov exponents (FFTLE). Each panel
contains the renormalization group of 16 (= ×4 4) spatiotemporal scales. For each panel, the columns represent the temporal scale (1 through 4) and the rows
represent the spatial scale (1 through 4). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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2.5. Quantitative assessment of scale invariance of Lagrangian coherent
structures

The FTLE values of each component of the lattice in each spatio-
temporal scale of the renormalization group was compared with that of
the original ×64 64 lattice. The difference squared in value between the
two corresponding components was calculated and extracted to create
another 64×64 lattice that represents the FTLE error. For each com-
ponent, the error was discretized to 1 when it was less than an arbitrary
threshold of 0.1 or to 0 when it was equal to or greater than the
threshold. The error cutoff of 0.1 was determined by the sensitivity
analysis (Appendix 1, Supplementary Information).

3. Results

3.1. Lagrangian coherent structures of the renormalization group

Fig. 3 shows the repelling (top panel, orange) and the attracting LCS
(bottom panel, pink) in the renormalization group. The original scale
(spatial scale= 1; temporal scale= 1) shows that both the repelling
(orange) and attracting LCS (pink) cover most of the lattice like a spider
web. In the temporal scale 1, those web-like LCS were preserved in the
spatial scales 2 and 3. However, both the repelling (orange) and at-
tracting LCS (pink) became localized in the spatial scale 4. In the
temporal scale 2, some of those LCS clearly disappeared while others
were preserved. However, as in the temporal scale 1, the web-like LCS
were preserved in the spatial scales 2 and 3, and lost in some regions of
the spatial scale 4. In the temporal scale 3, further disappearance of LCS
was observed in the spatial scales 1 and 2. However, the web-like LCS
were still preserved in spatial scale 3. The attracting LCS (pink) were
virtually lost in the spatial scale 4. In the temporal scale 4, LCS dis-
appeared further but some linear structures remained in the spatial
scales 1, 2 and 3. As in the temporal scale 3, the attracting LCS (pink)
were lost in the spatial scale 4.

Fig. 4 shows the spatial relationship between bipolar electrograms,
the Lagrangian coherent structures, and the rotor trajectories.

3.2. Scale invariance of Lagrangian coherent structures

In Fig. 5, in the temporal scale 1 (left column), preservation of the
repelling LCS was observed in the spatial scales 2 and 3. However, the
repelling LCS was virtually lost in the spatial scale 4 (bottom left panel).
Similar observations were made in the temporal scales 2 (second left
column) and 3 (second right column). In the temporal scale 4 (right
column), preservation of the repelling LCS was only observed in the
spatial scale 1, whereas it was virtually lost in the spatial scales 3 and 4.

For the attracting LCS (Fig. 6), preservation of LCS was observed in
the spatial scales 2 and 3 of the temporal scale 1 (left column). Similar
to the repelling LCS, however, the attracting LCS was virtually lost in
the spatial scale 4 (bottom left panel). Similar observations were made
in the temporal scales 2 (second left column) and 3 (second right
column). In the temporal scale 4 (right column), preservation of the
attracting LCS was only observed in the spatial scale 1, whereas it was
virtually lost in the spatial scales 3 and 4. Importantly, those scale-
invariant LCS were not co-localized to the trajectory of the rotors
(Figs. 3 and 4).

Fig. 7 quantifies the scale invariance of the repelling (top panel) and
attracting LCS (bottom panel) at each spatiotemporal scale.

4. Discussion

4.1. Main findings

Our main findings are summarized as follows. First, we found that
both the repelling and attracting LCS change across the different spatial
and temporal scales of the renormalization group. Second, despite the
change across the scales, some LCS are scale-invariant, particularly
down to the spatial and temporal scales. Third, the patterns of those
scale-invariant structures are not obvious from the trajectory of the
rotors based on the traditional voltage mapping of the cardiac system.

4.2. Lagrangian coherent structures of the cardiac system

The repelling LCS of information flow indicates a surface barrier
that separates the individual information flow. In other words, the

Fig. 4. Spatial relationship between bipolar
electrograms, the Lagrangian coherent struc-
tures, and the rotor trajectories A, B, and C in-
dicate the bipolar electrograms at three separate lo-
cations as marked on the Lagrangian coherent
structures (D). The yellow solid lines indicate the
trajectory of the phase singularities. All the data are
described at the original scale (temporal scale= 1,
spatial scale= 1). D. LCS A representation of the
Langrangian coherent structures (LCS) from tem-
poral and spatial scale 1. LCS derived from the
backward finite-time Lyapunov exponents (BFTLE)
are shown in orange, and LCS derived from the for-
ward finite-time Lyapunov exponents (FFTLE) are
shown in pink. (For interpretation of the references
to color in this figure legend, the reader is referred to
the Web version of this article.)
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repelling LCS segment the lattice into smaller segments of information
dynamics. In contrast, the attracting LCS of information flow represents
a region of information mixing, which can be considered as a meeting
point of information particles that originate from different spiral waves.
Our approach provides a tool to quantitatively characterize a macro-
scale behavior of excitable media by specifically focusing on informa-
tion transport, thereby quantifying the spiral wave dynamics. In our
previous work, we applied LCS analysis of information flow to a simple
model of excitable media to quantify the complex interactions among
the components [7]. The present work extends the application of in-
formation flow LCS to multi-scale representation of a cardiac system
and identification of the scale-invariant structure.

4.3. Clinical implications

Our findings have two important clinical implications. First, our
analysis sheds new light on the mechanism that maintains fibrillation.
Our findings indicate the presence of scale-invariant structures asso-
ciated with spiral wave dynamics. The scale-invariant property of these
structures quantified by the LCS indicates their possible contribution to
the maintenance of spiral waves. Second, our analysis provides a new
approach to quantifying fibrillation, rather than simply the presence or
absence of fibrillation. Our method of quantitative analysis of human
fibrillation provides patient-specific diagnostic parameters that could
potentially serve as a valid endpoint for therapeutic interventions.
However, the geometry of the scale-invariant LCS is not simple. Future
work should focus on quantitative analyses of the scale-invariant LCS to
determine how it could contribute to maintenance of spiral waves.

Fig. 5. Scale invariance of repelling Lagrangian coherent structures. The renormalization group of 16 (= ×4 4) spatiotemporal scales. The columns represent
the temporal scale (1 through 4) and the rows represent the spatial scale (1 through 4). The components shown in light blue indicate those with the small finite-time
Lyapunov exponent (FTLE) errors (< 0.1). The components shown in dark blue indicate those with the large finite-time Lyapunov exponent (FTLE) errors (≥ 0.1). The
yellow solid lines represent the trajectory of the rotors. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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4.4. Limitations

We recognize several limitations associated with the numerical
method we implemented. We used the Fenton-Karma model, which is a
relatively simple cardiac model, with a homogeneous and isotropic 2-D
lattice. It is possible that a more biophysically detailed model of the
heart with anatomical heterogeneity, anisotropy and a more realistic
geometry could make our approach more difficult to analyze; however,
the information-theoretic approach that we used in the study was in-
dependent of the underlying ionic model specifications. In addition, the
simplicity of the cardiac model is an advantage that allows the results
from this model to be widely applicable to other reaction-diffusion
systems. The LCS in this work are the organizing manifolds of in-
formation flow. Unstable and/or multiple wavelets can still define the
LCS as long as the manifolds can be defined in a given period of time. If

the rotors are too unstable to create manifolds, the LCS cannot be de-
fined.

5. Conclusions

The Lagrangian coherent structures of information flow underlying
spiral waves are preserved across multiple spatiotemporal scales. A
multi-scale approach to the information flow within the cardiac system
provides a quantitative tool to improve our understanding of the me-
chanism of fibrillation.
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scale 2 (500 Hz), scale 3 (250 Hz), and scale 4 (125 Hz)]. The z-axis is % in-
variance, indicating the fraction of components on the lattice at each spatio-
temporal scale with the error of the finite-time Lyapunov exponent (FTLE) less
than 0.1. A. Repelling LCS., B. Attracting LCS.
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